การวิเคราะห์อนุกาคเชท่าปึนและปปิบาณของแบเรียบ ตะกั๋ว และพลวง กายหลังการยิอปีนบนแสื้อผ้าด้วยอาวุธปีนประเกท เอ็บ 16 เอ1 ด้วยเครื่อ0 Scanning Electron Microscope/ Energy Dispersive X-ray Spectroscopy (SEM/EDS)

Analysis of Gunshot Residue and Quantitative of Barium, Lead and Antimony After M16 A1 Shooting on Clothes by Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy (SEM/EDS)

ผู้ช่วยศาสตราจารย์พิเศษษ ตร.พลตำรวจโท แรงค์ กุลนิเทศ*

บทคัดย่อ
 การศึกษานี้มีวัตถุประสงค์ เพื่อศึกษา วิเคราะห์อนุภาคของเขม่าปืนบนเสื้อผ้าหลังการยิงปืน ด้วยอาวุธปืนที่ใช้ เอ็ม 16 เอ 1 และกระสุนปืนขนาด 5.56 มม. กลุ่มตัวอย่างที่ใช้ในการวิจัย ได้แก่ การทดสอบเสื้อ เสื้อโปโล เสื้อแจ็คเก็ต เสื้อเชิ้ต และ เสื้อยืด ก่อนและหลังการซัก ทำการวิเคราะห์ตัวอย่าง โดยใช้เครื่อง Scanning Electron Microscope/ Energy Dispersive X-ray Spectroscopy (SEM/EDS) ในการวัดปริมาณ ร้อยละของแบเรียม ตะกั่ว และพลวง

ผลการวิจัยพบว่า การศึกษาปริมาณของ เขม่าดินปืนบนเสื้อผ้าหลังการยิง และทำการทดสอบ เสื้อผ้าก่อนและหลังการซัก 1) พบว่ามีการเกาะติด ของอนุภาคเขม่าปืนในผ้าซาตินที่ใช้ในการทำเสื้อ

แจ๊ตเก็ตมากที่สุด และผ้าไนลอนที่ใช้ในการผลิต เสื้อเชิ้งน้อยที่สุด 2) พบปริมาณของเขม่าดินปืนบน เสื้อแจ็คเก็ตภายหลังการซักมากที่สุด และพบ ปริมาณของเขม่าดินปืนบนเสื้อยืดภายหลังภารซัก น้อยที่สุด เมื่อเปรียบเทียบชนิดของเสื้อโปโล เสื้อแจ็คเก็ต เสื้อเชิ้ต และเสื้อยืด ที่ใช้ในการทดสอบ เสื้อผ้าก่อนและหลังการซัก โดยการวัดปริมาแร้อย ละการลดลงของแบเรียม ตะกั่ว และพลวง พบว่า มีปริมาณของแบเรี่ยม ตะกั่ว และพลวง บนเสื้อแจ็ค เก็ตมีการลดลงมากที่สุด ร้อยละ 81.85 และมี ปริมาณของแบเรี่ยม ตะกั่ว และพลวงบนเสื้อยืด น้อยที่สุด ร้อยละ 19.77 โดยผลการทดลอง ทั้งสองแบบนี้มีความสัมพันธ์กัน 3) การวิเคราะห์ แบบ TWO-WAY ANOVA ผลการวิเคราะห์

[^0]ข้อมูลปรากฏค่าสถิติ F เท่ากับ 102.872 และ ค่า Sig เท่ากับ 0.000 จึงเห็นได้ว่าการใช้เครื่อง
Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy (SEM/EDS) จะเป็นอีกทางเลือกหนึ่งสำหรับใช้ในการตรวจ วิเคราะห์อนุภาคเขม่าปืนและตรวจสอบปริมาณ ของแบเรี่ยม ตะกั่ว และพลวง ได้

คำสำคัญ: เขม่าดินปืน, แบเรี่ยม, ตะกั่ว, พลวง, เสื้อผ้า, Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy

Abstract

The purposes of this research were to analyze of gunshot residue on clothing after shooting. The weapon used in this work is a M 16 A 1 and gunshot size 5.56 mm . The research instrument used for data collection was test clothing types of polo-shirt, jacket, shirt and T-shirt before and after washing. The Samples were analyzed by scanning electron microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS). The amounts quantitative percentage of barium, lead and antimony.

The research findings were as follows: The study of practical gunshot residue on clothing after shooting and test clothing before and after washing, practical gunshot residue on Jacket most stability and structure, practical gunshot residue T -shirt stability and structure least and 2) The comparison to type of polo-shirt jacket shirt and T-shirt used in the tests before and after washing.

The amounts percentage reduction of barium, lead and antimony of jacket percentage reduction most 81.85 percent and shirt least 19.77 percent. There is correlation between the two set of results. 3) The analysis of TWO-WAY ANOVA results for the statistics F is equal to 102.872 and the sig. equal to 0.000 The scanning electron microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDS) may be an alternative method for Analysis of gunshot residue and examination quantitative of barium lead and Antimony.

Keywords: Gunshot residue, Barium, Lead, Antimony, Clothing, Scanning electron microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDS)

บทนำ

ปัจจุบันความเจริญก้าวหน้าทางเทคโนโลยี ได้เข้ามามีบทบาทในการดำเนินชีวิตของประชาชน ในสังคมให้ได้รับความสะดวกสบาย และมีคุณภาพ ชีวิตที่ดีขึ้น แต่ในขณะเดียวกันอาชญากรกลับ มีการนำเอาเทคโนโลยีที่ทันสมัยมาใช้ในการ กระทำความผิด ทำให้อาชญากรรมที่เกิดขึ้นมีความ รุนแรงทั้งในรูปแบบและวิธีการ ตลอดจนมีความสลับ ซับซ้อนเพิ่มมากขึ้น สภาพการณ์ดังกล่าวเป็นการ ยากต่อการป้องกันปราบปราม (ณรงค์ กุลนิเทศ. 2551)

พยานหลักฐานทางนิติวิทยาศาสตร์เกิดขึ้น จากการวิเคราะห์ข้อมูลทางวิทยาศาสตร์ มีบทบาท ในกระบวนการยุติธรรมมากขึ้น ซึ่งในทางกฎหมาย จะถือว่าพยานหลักฐานเหล่านี้เป็นพยานหลักฐาน

อย่างหนึ่งที่จะสามารถนำเข้าสู่กระบวนการพิจารณา คดีในชั้นศาล มาประกอบความเห็นในการระบุตัว ผู้กระทำความผิด โดยการนำวัตถุพยานที่เก็บได้จาก สถานที่เกิดเหตุหรือจากตัวผู้ต้องสงสัย มาทำการ ตรวจพิสูจน์เพื่อให้เจ้าหน้าที่ตำรวจให้มีแนวทาง ในการสืบสวนสอบสวน และสามารถดำเนินการ จับกุมตัวผู้กระทำผิดและลงโทษผู้กระทำผิดได้ และ ก่อให้เกิดความเป็นธรรมและความน่าเชื่อถือ ของกระบวนการยุติธรรม

การประกอบอาชญากรรมของคนร้ายนั้น มักใช้อาวุธปืนในการกระทำผิด ดังนั้นการตรวจพิสูจน์ ทางนิติวิทยาศาสตร์ที่เกี่ยวข้องกับอาวุธบืนจึง เป็นงานที่มีความสำคัญมากโดยเฉพาะการตรวจพิสูจน์ หาคราบเขม่า ที่เกิดจากการยิงปืน (Gunshot Residue, GSR) จากตัวบุคคล ซึ่งเขม่าปืน นับเป็นหลักฐานทางนิติวิทยาศาสตร์อย่างหนึ่ง ที่สามารถพิสูจน์ทราบได้ว่าบุคคลนั้นๆ ได้ผ่านการ ยิงปืนหรือเกี่ยวข้องกับการยิงปืนมาหรือไม่ ซึ่งผล จากการตรวจพิสูจน์จะช่วยคลี่คลายการสืบสวน สอบสวนในคดีอาชญากรรมต่าง ๆ ที่เกี่ยวข้อง กับการใช้อาวุธปืนได้ เช่น คดีฆาตกรรม คดี อัตวินิบาตกรรม หรืออุบัติเหตุ เป็นต้น

การตรวจพิสูจน์อาวุธปืนเพื่อระบุตัวผู้ที่ยิงปืน โดยการตรวจหาเขม่าปืน Gunshot Residue (GSR) หรือสิ่งที่หลงเหลือจากการยิงปืน รูปแบบ หรือส่วนประกอบทั้งหมด ที่ฟุ้ง กระจาย ระเหยออก มาจากการยิงของอาวุธปืน ซึ่งเมื่อเกิดการยิงปืน เขม่าปืนจะอยู่ในรูปต่างๆ เช่น อนุภาคของดินปืน ที่ถูกเผาไหม้ อนุภาคของดินปืนที่ถูกเผาไหม้บาง ส่วน อนุภาคของดินปืนที่ไม่ถูกเผาไหม้ ไอของ ตะกั่ว ส่วนประกอบต่างๆ ของโลหะ และรูปแบบ ของร่องรอยที่ถูกลูกกระสุนปืนยิง จากการศึกษา อนุภาคเขม่าปืนสามารถแบ่งประเภทของ อนุภาคที่เกิดจากการยิงปืน หากตรวจพบธาตุ

เหล่านี้พร้อมกันสามารถบอกได้แน่นอนว่ามี เขม่าปืน ได้แก่ แบเรียม $(\mathbf{B a})$ ตะกั่ว $(\mathbf{P b})$ และพลวง ($\mathbf{S b}$)

คดีอาชญากรรมที่เกิดจากการใช้อาวุธปืน ร่วมในการกระทำความผิด ที่สามารถเห็นได้อย่าง ชัดเจนในสังคมไม่ว่าจะเป็นในระดับนานาชาติ และระดับประเทศเป็นการบ่งบอกถึงการเข้าถึง อาวุธปืนได้อย่างง่ายก็จะก่อให้เกิดอาชญากรรม ที่เกี่ยวข้องกับอาวุธปืนมากยิ่งขึ้น จากสถานการณ์ ความรุนแรงที่เกิดขึ้นจากจังหวัดชายแดนภาคใต้ จากศูนย์ข้อมูลข่าวสารจังหวัดชายแดนภาคใต้ตลอด ระยะเวลา 10 ปี ที่ผ่านมา นับตั้งแต่ปี พ.ศ. 25472556 รวมทั้งสิ้น 15,713 เหตุการณ์ เกิดเหตุการณ์ ที่ใช้อาวุธปืน 7,536 เหตุการณ์ จะเห็นได้ว่าในการ ปล้นปืนจำนวน 171 ครั้ง เป็นอาวุธปืนที่ถูกปล้น 1,965 กระบอก และจากการตรวจยึดคืนอาวุธได้ อีกจำนวน 700 กระบอก เป็นอาวุธปืนประเภท เอ็ม 16 เอ 1 จำนวน 270 กระบอก ในส่วนของ อาวุธปืนที่ถูกปล้นและยังไม่สามารถตรวจยึดคืนได้ คงเหลืออีกจำนวน 1,265 กระบอกเป็นการบอกได้ ว่าในการก่อสถานการณ์ความรุนแรงและอาชญากรรม ที่เกิดขึ้นมีแนวโน้มในการใช้อาวุธปืนโดยเฉพาะ ปืนเอ็ม 16 เอ 1 จำนวนมาก

จากที่มาและความสำคัญของปัญหาที่กล่าว มาข้างต้นนั้น ในการวิจัยครั้งนี้จึงมีวัตถุประสงค์ เพื่อทำการตรวจหาเขม่าปืนบนเสื้อผ้าภายหลังการ ซัก โดยทำการตรวจหาอนุภาคที่เกิดจากการยิงปืน และสามารถตรวจพบอนุภาคเหล่านี้ได้คือการตรวจ หาแบเรียม (Ba) ตะกั่ว (Pb) และพลวง (Sb) โดยการใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy: SEM/EDS) ดังนั้น การตรวจพิสูจน์คราบเขม่าที่เกิดจากการ ยิงปืนนั้น หากทำการตรวจด้วยวิธีที่เชื่อถือได้มี

ความจำเพาะเจาะจงและมีความแม่นยำสูงจะก่อ ให้เกิดประโยชน์ต่อกระบวนการยุติธรรม

วัตถุประสงค์ของการวิจัย

1. เพื่อศึกษาวิเคราะห์อนุภาคเขม่าปืน บนเสื้อผ้าหลังการยิงปืนบนเสื้อผ้าชนิดต่าง ๆ
2. เพื่อศึกษาเปรียบเทียบปริมาณของ แบเรี่ยม ตะกั่ว และพลวง ภายหลังการยิงบนเสื้อผ้า ก่อนซัก และหลังซักผ้า

ขอบเขตการวิจัย

1. ขอบเขตด้านเนื้อหา

ทำการตรวจหาปริมาณของแบเรี่ยม ตะกั่ว และพลวง บนเสื้อผ้า ภายหลังการยิงปืน โดยอาวุธปืนเอ็ม 16 เอ 1 โดยใช้กระสุนปืนขนาด 5.56×45 มิลลิเมตร โดยการใช้กล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy : SEM/EDS)
2. ขอบเขตด้านประชากร
2.1 ชนิดของเสื้อผ้าที่ใช้ในการทดลอง
2.1.1 ผ้าฝ้ายที่ใช้ในการผลิตเสื้อยืด
2.1.2 ผ้าโพลีเอสเทอร์ที่ใช้ในการ

ผลิตเสื้อโปโล
2.1.3 ผ้าซาตินที่ใช้ในการผลิตเสื้อ แจ๊คเก็ต 2.1.4 ผ้าไนลอนที่ใช้ในการผลิตเสื้อเชิ้ต 2.2 อาวุธปืนและเครื่องกระสุนปืนที่ใช้ใน การทดลอง
2.2.1 ปืนเล็กยาว แบบเอ็ม 16 เอ 1 2.2.2 กระสุนปืนขนาด 5.56×45

มิลลิเมตร

3. ขอบเขตด้านตัวแปร

3.1 ตัวแปรอิสระ

- ผ้าชนิดต่าง ๆ จำนวน 4 ชนิด ได้แก่ เสื้อโปโล เสื้อแจ๊คเก็ต เสื้อยืด และเสื้อเชิ้ต
3.2 ตัวแปรตาม
- อนุภาคของเขม่าปืน
- ปริมาณของแบเรี่ยม ตะกั่ว และ พลวง บนผ้าก่อนซักและหลังซัก

4. ขอบเขตด้านพื้นที่และระยะเวลาการวิจัย ทำการศึกษาเคราะห์อนุภาคข อง เขม่าปืน และปริมาณของแบเรี่ยม ตะกั่ว และพลวง บนเสื้อผ้า เก็บตัวอย่างโดยใช้อาวุธปืนเล็กยาว แบบเอ็ม 16 เอ 1 และกระสุนปืนนาโต้ ขนาด 5.56 มิลลิเมตร จะทำการยิงปืนครั้งละ 15 นัด ต่อ 1 ตัวอย่าง สำหรับทดลองยิงในตัวอย่างผ้าแต่ละชนิดโดย จะทำการเก็บตัวอย่างซ้ำจำนวน 5 ครั้ง ชนิดของ ผ้าที่ใช้ทั้ง 4 ชนิด ได้แก่ เสื้อโปโล เสื้อแจ๊คเก็ต เสื้อยืด และเสื้อเชิ้ต

การทบทวนวรรณกรรม

1. แนวคิดหลักการทฤษฎีที่เกี่ยวข้อง 1.1 ความหมายของอาวุธปืน และเครื่อง กระสุนปืน มาตรา 4 แห่งพระราชบัญญัติอาวุธปืน เครื่องกระสุนปืนวัตถุระเบิดดอกไม้เพลิง และ สิ่งเทียมอาวุธปืน พ.ศ. 2490 แก้ไขเพิ่มเติมโดย มาตรา 4 แห่งพระราชบัญญัติอาวุธปืน ตลย (ฉบับที่ 3) พ.ศ. 2501 (พระราชบัญญัติอาวุธปืน เครื่องกระสุนปืน วัตถุระเบิด ดอกไม้เพลิงและ สิ่งเทียมอาวุธปืน พ.ศ. 2490,2543) ได้บัญญัติคำว่าอาวุธปืนไว้ดังนี้ อาวุธปืน หมายความรวมตลอดถึงอาวุธทุกชนิด ซึ่งใช้ส่งเครื่องกระสุนปืนโดยวิธีระเบิดหรือกำลังดัน ของแก๊ส หรืออัดลมหรือเครื่องกลไกอย่างใด ซึ่งต้อง อาศัยอำนาจของพลังงาน และส่วนหนึ่งส่วนใดของ อาวุธนั้นๆ

อาวุธปืนนั้นประกอบด้วย 4 ส่วน

1) ลำกล้อง
2) เครื่องลูกเลื่อน หรือส่วนประกอบสำคัญ ของเครื่องลูกเลื่อน
3) เครื่องลั่นไก หรือส่วนประกอบสำคัญ ของเลื่อนไก
4) เครื่องส่งกระสุน ซองกระสุน หรือส่วน ประกอบสำคัญของสิ่งเหล่านี้

เครื่องกระสุนปืน หมายความรวมตลอดถึง กระสุนโดด กระสุนปราย กระสุนแตก ลูกระเบิด ตอร์ปิโด ทุ่นระเบิดและจรวด ทั้งชนิดที่มีหรือไม่มี กรดแก๊ส เชื้อเพลิง เชื้อโรค ไอพิษ หมอกหรือควัน หรือกระสุน ลูกระเบิด ตอร์ปิโด ทุ่นระเบิด และ จรวด ที่มีคุณสมบัติล้ายคลึงกัน หรือเครื่องหรือ สิ่งสำหรับอัดหรือทำ หรือใช้ประกอบเครื่องกระสุนปืน

1.2 ความเป็นมาของเขม่าปืน

ความเป็นมาของเขม่าปืน (Gunshot Residue: GER) (อรรถพล แช่มสุวรรณวงศ์ และคณะ, 2552) คือ เขม่าปืน หรือสิ่งที่หลงเหลือ จากการยิงปืน ซึ่งหมายถึง สิ่งใดๆ รูปแบบหรือส่วน ประกอบทั้งหมด ที่ฟุ้ง กระจาย ระเหยออกมาจาก การยิงของอาวุธปืนซึ่งเมื่อเกิดการยิงปืน เขม่าปืน จะอยู่ในรูปต่าง ๆ ดังนี้

1) อนุภาคของดินปืนที่ถูกเผาไหม้
2) อนุภาคของดินปืนที่ถูกเผาไหม้บางส่วน
3) อนุภาคของดินปืนที่ไม่ถูกเผาไหม้
4) ไอของตะกั่ว
5) ส่วนประกอบต่าง ๆ ของโลหะ
6) รูปแบบของร่องรอยที่ถูกลูกกระสุนปืนยิง ประเภทของเขม่าปืน

อนุภาคที่เกิดจากการยิงปืน สามารถ จำแนกได้ 3 ประเภท คือ

1) ประเภทที่แน่นอน (Exclusive/ Unique GSR): ถ้าตรวจพบธาตุเหล่านี้พร้อมกัน

บอกได้แน่นอนว่ามีเขม่าปืน ได้แก่ แบเรี่ยม (Ba), ตะกั่ว (Pb), และพลวง (Sb)
2) ประเภทบ่งชี้ (Characteristic/ Indicative GSR) : ถ้าตรวจพบธาตุเหล่านี้น่าเชื้อ ได้ว่ามีเขม่าปืน ได้แก่ $\mathrm{Si}-\mathrm{Ba}-\mathrm{Ca} \mathrm{Pb}-\mathrm{Sb} \mathrm{Pb}-\mathrm{Ba}$ $\mathrm{Sb}-\mathrm{S} \mathrm{Sb}$ และ Pb
3) ประเภทอื่นๆ (Other GSR): ถ้าหากตรวจพบธาตุเหล่านี้ไม่อาจยืนยันได้ว่ามี เขม่าปืน ได้แก่ $\mathrm{Ca} \mathrm{Cu} \mathrm{Fe} \mathrm{Ni} \mathrm{P} \mathrm{Si} \mathrm{S} \mathrm{และZn}$
1.3 ประเภทของอาวุธปืนที่ใช้ในการวิจัย

อาวุธปืนเอ็ม 16 หมายถึง อาวุธปืนเล็ก ยาวขนาดปากลำกล้องกว้าง 5.56 มิลลิเมตร เป็นอาวุธ ประทับบ่ายิง บรรจุกระสุนในซองกระสุน (Magazine) โดยใช้กระสุนปืนขนาด .223 หรือ 5.56 มิลลิเมตร บริหารกลไกด้วยแรงดันแก๊ส ระบายความร้อนด้วย อากาศ สามารถยิงได้ทั้งแบบกึ่งอัตโนมัติและแบบ อัตโนมัติ โดยใช้คันบังคับยิง ชิ้นส่วนต่าง ๆ ของปืน ผลิตขึ้นจากวัสดุโลหะเหล็ก อะลูมิเนียม อาวุธปืน ชนิดนี้เป็นอาวุธที่ใช้ในสงครามทางทหาร ซึ่งมี อานุภาพแรงสูงและประชาชนทั่วไปครอบครองไม่ได้ (นิภาพร อ่อนทองคำ, 2554,หน้า 39-41)

1.4 ความเป็นมาเกี่ยวกับเส้นใยผ้า คุณสมบัติของเส้นใยผ้า (Fiber

 Properties)ผ้าแต่ละชนิดมีคุณสมบัติแตกต่างกัน ตามชนิดและที่มาของเส้นใย ถ้าเป็นผ้าที่ได้จาก เส้นใยธรรมชาติการเปลี่ยนแปลงคุณสมบัติทำได้ ยากกว่าผ้าที่ได้จากเส้นใยสังเคราะห์ซึ่งสามารถผลิต และเพิ่มเติมปรับปรุงคุณสมบัติได้ตามที่ผู้เชี่ยวชาญ ค้นคว้าโดยคำนึงถึงประโยชน์ใช้สอย การดูแลรักษา ความสวยงามและความเหมาะสมในเรื่องราคา

การศึกษาคุณสมบัติของผ้าแต่ละชนิด ก็เพื่อ ให้ผู้บริโภคได้ใช้ประโยชน์อย่างคุ้มค่า ผ้าบางชนิด มีคุณสมบัติดีน่าใช้ดูแลรักษาง่าย แต่บางชนิด

มีคุณสมบัติไม่น่าใช้ ทำความสะอาดและดูแลรักษา ยาก แม้กระทั่งขั้นตอนการตัดเย็บ เมื่อเราได้ศึกษา คุณสมบัติรู้ข้อดีข้อเสียก็สามารถเลือกใช้ได้อย่าง เหมาะสมตรงตามประโยชน์ใช้สอยที่ต้องการ

1.5 องค์ประกอบของเส้นใย

เส้นใย (Fibers) คือพอลิเมอร์ชนิดหนึ่ง ที่มีโครงสร้างของโมเลกุลสามารถนำมาทำเป็นเส้นด้าย
1.5.1 ประเภทของเส้นใย แบ่งเป็น 3ประเภท คือ

1) เส้นใยจากธรรมชาติ ประเภท ของเส้นใยที่มีอยู่ในธรรมชาติ
2) เส้นใยสังเคราะห์ เป็นเส้นใย ที่มนุษย์สังเคราะห์ขึ้นจากสารอนินทรีย์หรือสาร อินทรีย์ใช้ทดแทนเส้นใยจากธรรมชาติ
3) เส้นใยกึ่งสังเคราะห์ เป็นเส้นใย ที่ได้จากการนำสารจากธรรมชาติมาปรับปรุง โครงสร้างให้เหมาะกับการใช้งาน เช่นการนำ เซลลูโลสจากพืชมาทำปฏิกิริยากับสารเคมีบางชนิด เส้นใยกึ่งสังเคราะห์นำมาใช้ประโยชน์ได้มากกว่า เส้นใยธรรมชาติ ตัวอย่างเส้นใยกึ่งสังเคราะห์ เช่น วิสคอสเรยอง แบมเบอร์กเรยอง เป็นต้น
1.6 หลักการเครื่อง Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy (SEM/EDS)

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDX) เป็นกล้องจุลทรรศน์อิเล็กตรอนรูปแบบหนึ่งซึ่งสร้าง ภาพชิ้นงาน โดยการส่องลำอิเล็กตรอนกราดไปบน ผิวหน้าของชิ้นงานอย่างต่อเนื่องทีละแถวจากนั้นส่ง ข้อมูลขึ้นไปยังจอภาพ โดยจะปรากฏเป็นเส้น โดยจะมองเห็นเส้นใหม่เก่าหายไปตั้งแต่เส้นแรกสุด ไปจนถึงล่างสุด เส้นที่มองเห็นนี้จะรวมกันเป็นภาพ ตัวอย่างที่เราต้องการอิเล็กตรอนเมื่อเกิดอันตรกิริยา

กับอะตอมบนชิ้นงานจะปล่อยสัญญาณออกมาซึ่งให้ ข้อมูลเกี่ยวกับลักษณะทางกายภาพ องค์ประกอบ ทางเคมี และคุณสมบัติอื่น ได้แก่ การนำไฟฟ้าของ วัสดุที่ประกอบขึ้นเป็นชิ้นงานภาพที่ถูกถ่ายจาก SEM ภาพแรกคือภาพผิวหน้าของเหล็กที่ผสม ซิลิกอนซึ่งถูกถ่ายไว้โดย Max Knoll ในปี ค.ศ. 1935 งานรุ่นบุกเบิกต่อมาเกี่ยวข้องกับหลักการทางฟิสิกส์ ของ SEM และอันตรกิริยาระหว่างลำอิเล็กตรอน กับผิวหน้าของชิ้นงานซึ่งถูกทำสำเร็จโดย Manfred von Ardenne ในปี ค.ศ. 1937 ซึ่งเขาได้จดสิทธิ บัตรไว้ที่ประเทศอังกฤษ แต่เขาไม่เคยสร้างเครื่องมือ ที่ใช้งานได้จริงเลยต่อมา SEM ได้ถูกพัฒนาต่อ โดย ศาสตราจารย์ เซอร์ Charles Oatley และ Gary Stewart นักศึกษาหลังปริญญาเอกของเขา และได้นำออกสู่ตลาดเป็นครั้งแรกในปี ค.ศ. 1965 โดยบริษัท Cambridge Scientific Instrument โดยใช้ชื่อว่า "เสตอริโอสแกน (Stereoscan)" โดย SEM เครื่องแรกได้ถูกส่งไปให้กับบริษัท $\mathrm{Du}-$ pont

อันตรกิริยาระหว่างอิเล็กตรอนกับวัสดุ

 เมื่อลำอิเล็กตรอนตกกระทบบนผิดหน้าของ ชิ้นงาน สัญญาณหลายรูปแบบที่เกิดจากอันตรกิริยา ระหว่างอิเล็กตรอนปฐมภูมิ (Primary electron) กับวัสดุที่อยู่บนผิดหน้าชิ้นงานได้แสดงข้อมูลบาง อย่างเกี่ยวกับวัสดุ โดยอิเล็กตรอนปฐมภูมิสามารถ เกิดอันตรกิริยากับวัสดุได้หลายวิธี เช่น1. อิเล็กตรอนปฐมภูมิจะทำให้เกิด อิเล็กตรอนทุติยภูมิ (Secondary electron) ที่มีพลังงานต่ำ ซึ่งช่วยเน้นลักษณะทางภูมิศาสตร์ ของวัสดุบนผิดหน้าชิ้นงาน ซึ่งมีความสำคัญในการ แสดงความแตกต่างของเฟสแต่ละเฟสในวัสดุ ที่มีหลายเฟส
2. อิเล็กตรอนที่กระเจิงกลับ (Backscattered electrons (BSE)) ซึ่งทำให้เกิดภาพ

ซึ่งแสดงความแตกต่างของธาตุที่มีเลขอะตอม (Z) ต่างกัน
3. อิเล็กตรอนที่กระเจิงกลับที่ถูกเลี้ยว เลน (Electron back scatter diffraction. EBSD) ซึ่งถูกใช้หาโครงสร้างและการจัดเรียงตัวของผลึก ในวัสดุบริเวณผิวหน้าของชิ้นงาน
4. การชนแบบไม่ยืดหยุ่นของอิเล็กตรอน ที่ตกกระทบกับอะตอมที่อยู่ในวัสดุบริเวณผิวหน้า ชิ้นงาน ทำให้อิเล็กตรอนที่อยู่ในออร์บิทอล (ชั้นพลังงาน (Shell)) ในอะตอม เปลี่ยนไปอยู่ใน ระดับพลังงานชั้นสูงขึ้น

อิเล็กตรอนที่ถูกกระตุ้นสามารถกลับสู่ ภาวะปกติโดยการเปลี่ยนระดับชั้นพลังงานของ อิเล็กตรอนกลับคืนสู่ชั้นพลังงานเดิม ซึ่งนำไปสู่การ ปล่อยรังสีเอ็กซ์ที่มีคุณสมบัติเฉพาะ (characteristic x -ray) หรือการหลุดออกของออเกอร์อิเล็กตรอน (Auger electron) โดยรังสีเอ็กซ์ที่ถูกปล่อยออกมา มีความยาวคลื่นที่ถูกจำกัดค่าหนึ่ง (ซึ่งสัมพันธ์กับ ความแตกต่างของระดับชั้นพลังงานที่แตกต่างกัน ของอิเล็กตรอน ในแต่ละธาตุ) รังสีเอ็กซ์ที่ถูกปล่อย ออกมาจะมีคุณลักษณะเฉพาะตามธาตุที่อยู่ชั้นบนสุด ไม่กี่ไมครอนบนวัสดุที่อยู่บริเวณผิดหน้าชิ้นงาน และถูกวัดโดยเครื่องรับสัญญาณ energy-dispersive X -ray spectroscopy (EDS) นอกจากนี้ยังมีรังสี เอ็กซ์แบบต่อเนื่อง (Continuum X-rays) และ แสงที่ตามองเห็นได้ (cathodoluminescence, CL) รวมทั้งความร้อนถูกปล่อยออกมาร่วมด้วยแต่การที่ เครื่อง SEM เครื่องเดียวจะมีอุปกรณ์รับสัญญาณ ทุกชนิดเป็นสิ่งที่พบได้ยากมากเครื่อง SEM สามารถให้ภาพที่มีความละเอียดสูงมาก ซึ่งสามารถ แสดงรายละเอียดที่มีขนาดน้อยกว่า 1 นาโนเมตร เนื่องจากลำอิเล็กตรอนที่ถูกโฟกัสให้มีขนาดเล็กมาก ภาพถ่ายจาก SEM จึงมีความลึกของภาพที่มาก ดังนั้น จึงให้ภาพถ่าย 3 มิติ ของชิ้นงานที่มี

คุณลักษณะเฉพาะซึ่งเหมาะแก่การทำความเข้าใจ โครงสร้างของวัสดุบริเวณผิวหน้าของชิ้นงานเครื่อง SEM มีกำลังขยายในช่วงกว้าง ตั้งแต่ประมาณ 10 เท่า (เทียบเท่ากับกำลังของเลนส์แว่นขยาย) ไปจนถึงมากกว่า 500,000 เท่า ประมาณ 250 เท่า ของกำลังขยายที่ได้จากกล้องจุลทรรศน์ที่ใช้แสง จะทำได้

2. งานวิจัยที่เกี่ยวข้อง

2.1 งานวิจัยภายในประเทศ

 ณัฐนันท์ ชาติรักวงศ์ (2551) ทำการศึกษาเรื่อง "การตรวจพิสูจน์เขม่าปืนที่คงอยู่ บนเสื้อผ้าด้วยเทคนิค SEM/EDX" ผลการศึกษา วิจัยพบว่าการตรวจเขม่าปืนที่คงอยู่บนเสื้อผ้าโดยใช้ เครื่อง Scanning Electron Microscope/energy Dispersive Spectrometer (SEM/EDS) โดย ทำการเก็บตัวอย่างอนุภาค GSR บนแขนเสื้อ ด้วยวิธี Tape Lift ผลการทดลองพบว่า อนุภาคส่วนใหญ่ ประกอบด้วยธาตุ $\mathrm{Ba}, \mathrm{Pb}, \mathrm{Sb}$ อีกทั้งอนุภาคเขม่า ปืนยังคงอยู่บนแขนเสื้อนานถึง 24 ชั่วโมงหลังจาก ยิงปืน และตัวอย่างที่เก็บจากบริเวณต่าง ๆ บนเสื้อ นั้นยังมีปริมาณอนุภาคเขม่าปืนที่แตกต่างกันด้วย เจริญ ปานคล้าย (2552) ทำการ ศึกษาเรื่อง "การตรวจเขม่าดินปืนบนเสื้อผ้าที่ระยะ ยิงต่างๆ ด้วยเทคนิค Inductively Coupled Mass Spectrometry (ICP-MS) "ผลการศึกษาวิจัยพบ ว่าในปืนพกรีวอลเวอร์ ขนาด . 357 Magnum ความ ยาวลำกล้อง 4 นิ้ว และ 6 นิ้ว ทดลองยิงห่างจาก ปากลำกล้องปืน $1,2,3,4,5,6$ และ 7 ฟุต ผลการทดลองพบว่าเขม่าดินปืนที่ยิงจากปืนยาว ลำกล้องเดียวกันที่ระยะต่างกันมีปริมาณที่แตกต่างกัน โดยจะลดลงเมื่อระยะยิงห่างจากปากลำกล้อง กล้องปืน ไกลมากขึ้น และเขม่าดินปืนสามารถปลิวไปไกล ถึง 5 ฟุต เขม่าดินปืนที่ยิงจากความยาวลำกล้อง ยาวกว่าจะมีปริมาณมากกว่าปืนยาวลำกล้องที่สั้นกว่าศมนวรรณ หัสมินทร์ (2552) ได้ทำการศึกษาการวิเคราะห์ปริมาณการคงอยู่ของ ไนเตรทในลำกล้องบืนภายหลังการยิง โดยเทคนิค ไอออนโครมาโทรกราฟี และสเปคโตรโฟโตมิเตอร์ ผลการศึกษาหาปริมาณไนเตรทภายหลังการยิงปืน 2 นัด โดยการเก็บตัวอย่างทันที 24 ชั่วโมง 48 ชั่วโมง ภายหลังการยิง สามารถตรวจพบปริมาณไนเตรท ได้จนถึง 48 ชั่วโมง

อัจฉราภรณ์ ประสงค์ (2552) ทำการศึกษาเรื่อง "ความสัมพันธ์ระหว่างปริมาณ ของเขม่าปืนบนสื้อผ้าของผู้อิปืนกับระยะเวลาภายหลัง การยิงปืน โดยเทคนิค Inductively Coupled Plasma - Mass Spectrometry (ICP--MS) ผลการศึกษาวิจัยพบว่าการศึกษาความสัมพันธ์ ระหว่างปริมาณของเขม่าปืนบนเสื้อผ้าของผู้ยิงปืน กับระยะเวลาภายหลังการยิงเลือกศึกษษาจากผ้า 3 ชนิด ได้แก่ ผ้าฝ้ายที่ใช้ในการผลิตเสื้อยืด ผ้าโพลีเอสเทอร์ที่ใช้ในการผลิตเสื้อเชิ้ต และผ้าซาติน ที่ใช้ในการผลิตเสื้อแจ๊คเก็ต โดยวิเคราะห์หาพลวง (Sb), แบเรี่ยม (Ba) และตะกั่ว (Pb) ซึ่งเป็นองค์ ประกอบสำคัญในเขม่าปืน (Gunshot Residues) ด้วยเทคนิค Inductively Coupled Plasma - Mass Spectrometry และใช้ปริมาณของธาตุทั้งสามธาตุ เป็นการวัดปริมาณของเขม่าปืน ระยะเวลา ในการ เก็บตัวอย่าง ได้แก่ เก็บทันทีหลังยิงงืน, เก็บตัวอย่าง 1 วัน, 7 วัน และ 30 วัน หลังยิงปืน

2.2 งานวิจัยต่างประเทศ

L. Garofana และคณะ (1999)

ทำการศึกษาอนุภาคเขม่าปืนในสิ่งแวดล้อมและกลุ่ม อาชีพอื่นๆ ได้ดำเนินการทดสอบใน Reparto Carabinieri Investigation Scientifiche, Parma, Italy ข้อมูลที่ได้ 175 ตัวอย่าง จากมือของผู้ที่อยู่ ในอาชีพที่มีความสัมพันธ์กันซึ่งได้มาจากรถยนต์, จากมือขวาของผู้ขับขี่รถยนต์ภายหลังการขับขี่

รถยนต์, แบตเตอรี่และยางล้อรถ และจากมือ ของแต่ละคนภายหลังการทำการผลิตปลอกกระสุน ปืนในอุตสาหกรรมปืนแก็ปเด็กและดอกไม้ไฟ แม่ว่า การศึกษาได้ยืนยันว่าเป็นส่วนประกอบหลักของ ปลอกกระสุนปืน ตัวอย่างจากกลุ่มอาชีพไม่สามารถ ยืนยันอนุภาคที่มาจากเขม่าปืน แม้ว่าจะพิสูจน์ได้ว่า ประชาชนที่มีความเกี่ยวข้องกับอาชีพยวดยาน พาหนะ (เช่น เครื่องยนต์, ช่างไฟฟ้า, ช่างซ่อมยาง) ก็สามารถปรากฏอนุภาคที่ประกอบด้วยธาตุโลหะ Ba และ Sb โดยอาจยากที่จะจำแนกอนุภาคเขม่า ปืนจากรูปร่างที่ไม่สม่ำเสมอ, แบนและเป็นแผ่น ซึ่งเสี่ยงต่อผลบวกเทียม เมื่อค้นลักษณเฉพาะใน ระบบ Automatic และใช้ Tape Lift ในการเก็บ โดยปราศจากการตรวจสอบรูปสัณฐานของอนุภาค ซึ่งเชื่อว่าการเปลี่ยนแปลงเพียงเล็กน้อยก็มีความ จำเป็นในการจำแนก จึงได้มีความพยายามที่จะ พิสูจน์ในงานปัจจุบันนี้ การค้นคว้าจึงได้ยืนยันการ ศึกษาก่อนหน้านี้ว่วผู้ทำอุตสาหกรรมปลอกกระสุน ปืนในอิตาลี พบธาตุโลหะ Ba, Pb และ Sb ปรากฏ ในอนุภาคเขม่าปืน

Arie Zeichner และคณะ (2003) ได้ดำเนินการทดลองเก็บ gunpowder residue จาก เสื้อผ้าของผู้ยิงโดย vacuum และวิเคราะห์ โดย Dhromatography /thermal energy (GC/ TEA), ion mobility spectrometry (IMS), และ gas chromatography/mas spectrometry (GC/ MA residue จะถูกเก็บบน fiber glass และ Teflon filter ใช้ระบบ portable sampler ทั้งหมดต่อกับ IMS instrument ตัวทำละลายหลายๆ ตัวนำมาใช้เป็นตัวสกัด องค์ประกอบของ propellant จาก Filter สารสกัดนำไปหมุนเหวี่ยงและกรอง ทำให้เข้มขันขึ้นโดยการนำไประเหยเป็นไอ ผลการ ทดลองของการศึกษาวิธีดำเนินการสำหรับการ วิเคราะห์ของเขม่าปืน นำมาสู่ police ได้ปรับปรุงง

วิธีการเก็บบนเสื้อผ้าโดย double-side adhesive coated aluminium stubs (tape life method) และสำหรับวิธีการเก็บอนุภาค GSR ด้วย vacuum collection propellant ก็ยังเป็นวิธีที่ยังใช้อยู่

Lubor Fojtasek และคณะ (2003) ทำการทดลองศึกษาการกระจายของอนุภาค GSR 7 ทิศทางในสิ่งแวดล้อมของการยิงปืน (ปืนพกสั้น ยี่ห้อง ฉ (ขนาด 9 มิลลิเมตรLuger) ทั้งปัจจัย ภายในและภายนอก และชนิดของกระสุนปืนที่แตก ต่างกัน 2 ชนิด ที่จะนำมาใช้การทดลองยิง ผลที่ได้ แสดงให้เห็นว่าจำนวนอนุภาค GSR ที่มากที่สุดอยู่ ทางด้านขวาห่างจากตำแหน่งที่ยิง $2-4$ เมตร อนุภาค GSR ยังคงพบที่ระยะ 10 เมตร

Zuzanna Brozek-Mucha และ Grzegorz Zadora (2003) ความพยายามที่จะ พยายามสร้างการจำแนกแบบแผนสำหรับแหล่ง ตัวอย่าง GSR particle จากกระสุนปืนทั้ง 4 ชนิด โดยเก็บจากมือผู้ยิงภายหลังการยิงปืนทันทีทันใด ตัวอย่างถูกนำมาตรวจสอบโดยวิธี SEM-EDX ในระบบ automatic ผลที่ได้ถูกแสดงเป็นความถี่ ของอนุภาคที่สร้างจาก chemical classes หลายๆ อัน สิ่งจำเป็นที่จะพิสูจน์แยกแยะลักษณ์เฉพาะเหล่านั้น โดยกระทำโดยวิธี mann-Whitney Test Cluster และ analysis ถูกนำมากระทำโดยกลุ่มการวิเคราะห์ ตามแหล่งกำเนิดนั้น เช่น ประเภทของกลุ่มกระสุน พบว่าตัวอย่างอนุภาคเขม่าปืนที่มาจาก Browning 7.65 mm . และ Luger 9 mm จะจำแนกได้อย่าง ตรงไปตรงมาง่ายจากตัวอย่างอื่น ตัวอย่างของ กระสุนที่มาจาก Makarov 9 mm และ Tokarov 7.62 mm ไม่สามารถจำแนกได้โดยใช้ความถี่ของ การเกิดอนุภาคโดยการจำแนก chemical classes วิธีดำเนินการวิจัย

ในการเก็บตัวอย่างเขม่าดินปืนภายหลัง ยิงปืนเล็กยาว แบบเอ็ม 16 เอ 1 และกระสุนปืนนาโต้

ขนาด 5.56 มิลลิเมตร ยิงปืนครั้งละ 15 นัด ต่อตัวอย่าง สำหรับทดลองยิงในตัวอย่างผ้าแต่ละ ชนิดโดยจะทำการเก็บตัวอย่างซ้ำ 5 ครั้ง บนผ้า 4 ชนิด เสื้อโปโล เสื้อแจ็คเก็ต เสื้อเชิ้ต และเสื้อยืด ในส่วนของสถานที่ใช้ในการเก็บตัวอย่างเป็น สนามยิงปืนที่โล่งที่มีอากาศถ่ายเทได้สะดวก เพื่อ ให้สอดคล้องกับการเก็บตัวอย่างจากสถานการณ์จริง ในการเก็บตัวอย่างจัดเก็บเขม่าปืนโดยทำการตัดเนื้อ ผ้าบริเวณแขนเสื้อทั้งก่อนซักและ หลังซัก

ขั้นตอนการเก็บตัวอย่างเขม่าปืนบน เสื้อผ้า มีดังนี้

1. ผู้ยิงปืนสวมเสื้อผ้าชนิดที่ต้องการ ทดสอบ ได้แก่ ผ้าโพลีเอสเทอร์ (ผ้าที่ใช้ทำเสื้อ โปโล) ผ้าซาติน (ผ้าที่ใช้ทำเสื้อแจ๊คเก็ต) ผ้าฝ้าย (ผ้าที่ใช้ทำเสื้อยืด) และผ้าไนลอน (ผ้าที่ใช้ทำเสื้อเชิ๊ต)
2. ทำการยิงอาวุธปืนโดยใช้ปืนเล็กยาว แบบเอ็ม 16 เอ 1 และใช้กระสุนปืนนาโต้ขนาด 5.56×45 มม. ในการยิง
3. ภายหลังยิงบืนแล้ว ทำการเก็บ เขม่าปืนในแต่ละบริเวณที่กำหนด ผู้ยิงจะทำการ เปลี่ยนเสื้อผ้าใหม่ในแต่ละครั้งที่จะทำการเก็บ ตัวอย่างและเก็บตัวอย่างด้วยการตัดเนื้อผ้าบริเวณ เดียวกันตลอดการทดลองทั้งเนื้อผ้าก่อนซักและ หลังซัก โดยนำเนื้อผ้าที่ได้ตัดเก็บไว้ในถุงพลาสติก ที่ปิดมิดชิด ที่สามารถป้องกันการปนเปื้อนจาก สิ่งต่าง ๆ โดยทำการกำหนดเลขหมายของซอง ตัวอย่างไว้ เพื่อนำไปวิเคราะห์ด้วยกล้องอิเล็กตรอน แบบส่องกราด (SEM/EDS)
4. นำตัวอย่างที่ได้ทำการเก็บตัวอย่าง มาแล้วนั้น ไปทำการวิเคราะห์ด้วยกล้องอิเล็กตรอน แบบส่องกราด (SEM/EDS) ที่ 20 กิโลโวลต์ (kv) กำลังขยายที่ 100 เท่าสเกล 100 ในโหมด High vacuum จะได้ภาพแบบ SEL โดยไม่ต้อง ทำการฉาบผิวตัวอย่างด้วยทองก่อนการวิเคราะห์

และนำผลการวิเคราะห์มาทำการเปรียบเทียบ ปริมาณของแบเรี่ยม ตะกั่ว และพลวง บนเสื้อผ้า เพื่อรายงานผลของปริมาณของแบเรี่ยม ตะกั่ว และ พลวง บนเสื้อผ้าที่ใช้ทดสอบ โดยนำผลการทดลอง ไปใช้ประโยชน์ทางนิติวิทยาศาสตร์ต่อไป

ผลการวิจัย

1. การวิเคราะห์อนุภาคเขม่าปืน จากผลการวิเคราะห์ธาตุโลหะสำคัญ ที่เป็นองค์ประกอบในเขม่าปืน จากการเก็บตัวอย่าง ด้วยการตัดเนื้อผ้า และสเปคตรัมของฐาตุที่ปรากฏ

จากการตรวจเขม่าปืนก่อนซักและหลังซักบนผ้าชนิด ต่างๆ โดยเทคนิค SEM/EDS ในการศึกษา ปริมาณเขม่าปืนบนเสื้อสามารถศึกษาเปรียบเทียบ กลุ่มอนุภาคโครงสร้างเส้นใยของผ้าที่มีโครงสร้าง เส้นใยที่แตกต่างกันจะทำให้การเกาะติดของอนุภาค เขม่าปืนมีความแตกต่างกันเมื่อนำผ้าชนิดต่าง ๆ ไปซักจะปรากฏว่าจะมีการเกาะติดของอนุภาคเขม่า ปืนของผ้าแต่ละชนิดมีการเกาะติดของอนุภาคเขม่า ปืนก่อนซักและหลังซักที่จะแสดง ปรากฏดังภาพ ต่อไปนี้
1.1 การวิเคราะห์อนุภาคของเขม่าปืนบนเสื้อโปโล

ภาพ 1 กลุ่มอนุภาคเขม่าปืน และกราฟแสดงสเปคตรัมของธาตุของเสื้อโปโลก่อนซักและหลังซัก
1.2 การวิเคราะห์อนุภาคของเขม่าปืนบนเสื้อแจ็คเก็ต

ภาพ 2 กลุ่มอนุภาคเขม่าปืน และกราฟแสดงสเปคตรัมของธาตุของเสื้อแจ็คเก็ตก่อนซักและหลังซัก
1.3 การวิเคราะห์อนุภาคของเขม่าปืนบนเสื้อยืด
ก่อนการซัก

ภาพ 3 กลุ่มอนุภาคเขม่าปืน และกราฟแสดงสเปคตรัมของธาตุของเสื้อยืดก่อนซักและหลังซัก
1.4 การวิเคราะห์อนุภาคของเขม่าปืนบนเสื้อเชิ๊ต

ภาพ 4 กลุ่มอนุภาคเขม่าปืน และกราฟแสดงสเปคตรัมของธาตุของเสื้อเชิ๊ตก่อนซักและหลังซัก
2. การเปรียบเทียบปริมาณร้อยละของ แบเรี่ยม ตะกั่ว และพลวง บนเสื้อ

จากผลการวิเคราะห์ธาตุโลหะสำคัญ ที่เป็นองค์ประกอบในเขม่าปืน จากการเก็บตัวอย่าง ด้วยกา ตัดเนื้อผ้า และสเปคตรัมของธาตุที่ปรากฏ จากการตรวจเขม่าปืนก่อนซักและหลังซักบนผ้าชนิด

ต่าง ๆ โดยเทคนิค SEM/EDS ในการศึกษา ปริมาณเขม่าปืนบนเสื้อสามารถเปรียบเทียบปริมาณ ร้อยละของเขม่าปืน ที่จะแสดงปริมาณ แบเรียม (Ba) ตะกั่ว (Pb) และพลวง (Sb) บนเสื้อผ้า ทั้ง 4 ชนิด ทั้งก่อนซักและหลังซัก ปรากฏดังภาพ ต่อไปนี้

ภาพ 4 แสดงการเปรียบเทียบปริมาณร้อยละการลดลงของเขม่าปืนบนเสื้อผ้า
3. การวิเคราะห์การแจกแจงความแปรปรวน และปริมาณเขม่าปืนบนเสื้อผ้าทั้ง 4 ชนิด ตาราง 1 การวิเคราะห์การแจกแจงความแปรปรวน

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
ชนิดผ้า * วิธีเก็บ * ทดลอง * ธาตุ	130.731	6	21.789	102.872	0.000	0.763
Error	40.666	192	0.212			
Total	3003.488	240				

* แตกต่างกันที่ระดับนัยสำคัญ 0.05

จากตาราง 1 แสดงให้เห็นว่าจากสถิติการ ทดสอบผ้าชนิดต่าง ๆ แยกตามวิธีการเก็บตัวอย่าง ทั้งก่อนซักและหลังซัก หากแบ่งตามธาตุที่สำคัญที่ สามารถตรวจพบได้ในเขม่าปืน มีค่าสถิติ F เท่ากับ
102.872 และ Sig. เท่ากับ 0.000 ซึ่งมีค่าน้อยกว่า ที่ระดับนัยสำคัญ 0.05 แสดงว่า ผ้าชนิดต่าง ๆ แยกตามวิธีการเก็บตัวอย่าง ทั้งก่อนซักและหลังซัก ที่ระดับนัยสำคัญ 0.05 มีความแปรปรวนแตกต่างกัน ตาราง 2 ปริมาณเขม่าปืนบนเสื้อทั้ง 4 ชนิด

Mean	Std. Error	95% Confidence Interval	
		Lower Bound	Upper Bound
2.202	0.030	2.144	2.261

จากตาราง 2 แสดงให้เห็นว่าจากสถิติการ ทดสอบผ้าชนิดต่าง ๆ แยกตามวิธีการเก็บตัวอย่าง ทั้งก่อนซักและหลังซัก หากแบ่งตามธาตุที่สำคัญ ที่สามารถตรวจพบได้ในเขม่าปืน ที่ระดับนัยสำคัญ 0.05 มีค่าเฉลี่ยเท่ากับ 2.202 ซึ่งอยู่ในช่วงของของ เขตความเชื่อมั่นที่ ร้อยละ 95 คือ ตั้งแต่ 2.144 -2.261 และ ค่าความคลาดเคลื่อนมาตรฐานเท่ากับ 0.030

สรุปและอภิปรายผลการวิจัย

ในการศึกษาครั้งนี้ สามารถอภิปรายผลการ วิจัยได้ดังนี้ คือ

1. การศึกษากลุ่มอนุภาคเขม่าปืนที่ตรวจ ได้เป็นภาพเปรียบเทียบอนุภาคเขม่าปืนที่ตรวจพบ

ของผ้าแต่ละชนิดมีการเกาะติดของอนุภาคเขม่าปืน ก่อนซักโครงสร้างของเส้นใยผ้าที่โครงสร้างเส้นใยผ้า นั้นการศึกษากลุ่มอนุภาคของเขม่าปืนบนเสื้อผ้า แต่ละชนิด โดยใช้กล้องจุลทรรศน์อิเล็คตรอนแบบ ส่องกราดในการตรวจเขม่าปืนบนเสื้อผ้าโดยใช้ เครื่อง Scanning Electron Microscope/energy Dispersive Spectrometer (SEM/EDS) เป็นการ ศึกษาที่สามารถตรวจพบอนุภาคบนเสื้อผ้า มีความ สอดคล้องกับงานวิจัย วิวัฒน์ ชินวร ที่ได้ทำการ ศึกษาการวิเคราะห์เขม่าปืนบนตัวอย่างเสื้อโดยใช้ กล้องจุลทรรศน์แบบส่งกราด (SEM) ควบคู่ไปกับ เทคนิคการวิเคราะห์รังสีเอ็กซ์แบบ EDX โดย ไม่ต้องทำการเคลือบผิวตัวอย่างด้วยคาร์บอนหรือ ทองคำ ซึ่งสามารถศึกษาอนุภาคเขม่าปืน ตรวจหา

ธาตุที่เป็นองค์ประกอบ พลวง (Sb) ตะกั่ว (Pb) และแบเรียม (Ba) และระยะเวลาการคงอยู่ของ เขม่าเมื่อยิงปืน เช่นเดียวกับณัฐนันท์ ชาติรักวงศ์ การศึกษาการตรวจเขม่าปืนที่คงอยู่บนเสื้อผ้าโดยใช้ เครื่อง Scanning Electron Microscope/energy Dispersive Spectrometer (SEM/EDS) โดยทำการเก็บตัวอย่างอนุภาค GSR บนแขนเสื้อ โดยนักวิจัยทั้ง 2 ท่านได้ทำการศึกษาการตรวจเขม่า ปืนบนเสื้อผ้าด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบ ส่องกราดเช่นเดียวกันแต่มีความแตกต่างกันที่ กระบวนการเก็บตัวอย่างและขั้นตอนการวิจัย เช่น เดียวกันกับรัชนารถ กิตติดุษฎี ที่ทำการศึกษาการ ตรวจหาคราบเขม่าปืนบนมือโดยกล้องจุลทรรศน์ อิเล็กตรอนแบบสแกนที่มี Energy Dispersive X-Ray Spectrometer แต่ได้ทำการเก็บตัวอย่าง จากมือผู้ทำการยิงปืนแทนการเก็บตัวอย่างจาก บนเสื้อผ้า ในส่วนของกรณีการศึกษาการตรวจเขม่าปืน บนเสื้อผ้าของผู้ยิง การตรวจเขม่าปืนบนเสื้อผ้า โดยใช้เครื่อง Scanning Electron Microscope/ energy Dispersive Spectrometer (SEM/EDS) วิธีการตรวจวิเคราะห์ที่แตกต่างกันแต่มีความ สอดคล้องกันในการศึกษาที่สามารถตรวจพบอนุภาค บนเสื้อผ้า มีความสอดคล้องกับงานวิจัย เจริญ ปานคล้าย ได้ทำการตรวจเขม่าดินปืนบนเสื้อผ้าที่ระยะยิงต่าง ๆ ณัฐนันท์ ชาติรักวงศ์ ได้ศึกษาการตรวจเขม่าปืนบน เสื้อผ้าและอัจฉราภรณ์ ประสงค์ที่ศึกษาความ สัมพันธ์ระหว่างปริมาณของเขม่าปืนบนเสื้อผ้าของ ผู้ยิงปืนกับระยะเวลาภายหลังการยิงปืน โดยเทคนิค การวิเคราะห์ที่แตกต่างกัน
2. การศึกษาเปรียบเทียบปริมาณร้อยละ ของเขม่าปืนของผ้าแต่ละชนิดก่อนซักและหลังซัก โดยจะทำการเก็บตัวอย่างเนื้อผ้าแต่ละชนิดทั้ง 4 และทำการเปรียบเทียบปริมาณร้อยละของธาตุ สำคัญของเขม่าปืนอย่างแอนติโมนี (Sb) ตะกั่ว
(Pb) และแบเรียม (Ba) ปริมาณเขม่าที่เก็บได้จาก ตัวอย่างของเนื้อผ้าทั้งก่อนซักทำการเปรียบเทียบ กับหลังซักจะเห็นได้ว่ามีค่าร้อยละของการลดลง เขม่าปืนที่ไม่เท่ากัน สอดคล้องกับการศึกษาการ ตรวจเขม่าปืนได้มีการเก็บตัวอย่างอนุภาคเขม่าปืน จากเสื้อผ้า ภายในถุงหรือกระเป๋า และอื่นๆ อนุภาค ที่ถูกเก็บจะถูกนำมาทดสอบโดยใช้กล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด ผลที่ได้เป็นที่พอใจ ซี่งสังเกตจากอุปกรณ์ที่ใช้ทดสอบและวิธีการที่นำมา ใช้ในห้องปฏิบัติการ อุปกรณ์ที่หลากหลายเป็นไป ได้ที่จะมีการปนเปื้อนของอนุภาคเขม่าปืนบนเสื้อผ้า ซึ่งข้อดีของวัตถุพยานที่เป็นเสื้อผ้า คือ สามารถ ใช้ในการค้นหาอนุภาคเขม่าปืนซึ่งสอดคล้องกับงาน วิจัยของ J. Andrasko และ S. Petterssoหรือกร ณีการศึกษาการเก็บอนุภาคของเขม่าปืนจากเส้นผม เสื้อผ้า และมือ Zeichner Arieและ Nadav Levin [5] การประเมินพบผลสำเร็จในการวิเคราะห์ ตัวอย่างประมาณ 10% หลักเกณฑ์วิธีการเก็บ ตัวอย่างคือ จำนวนอนุภาคที่ตรวจพบต่อตัวอย่าง ได้อภิปรายปัญหาที่เป็นไปได้ของการปนเปื้อน ในตัวอย่าง และทดลองเก็บเขม่าปืนจากเสื้อผ้า ของผู้ยิง

ข้อเสนอแนะ

1. ข้อเสนอแนะจากการวิจัย

การเก็บตัวอย่างเขม่าปืนจากเสื้อผ้า สามารถเก็บตัวอย่างได้อย่างง่ายแต่ควรระมัดระวัง ในการเก็บตัวอย่าง เพราะมีการปนเปื้อนของ ตัวอย่างได้ง่ายจึงต้องอาศัยการระมัดระวังอย่างมาก และหากเก็บตัวอย่างไม่ดีจะมีผลการการตรวจพบ อนุภาคเขม่าปืนได้น้อยลง
2. ข้อเสนอแนะในการวิจัยครั้งต่อไป

1) ควรศึกษาการตรวจหาระยะห่าง

ระหว่างการยิงปืนในอาวุธปืนสั้นมีผลต่อการตรวจหา

ปริมาณเขม่าปืนจากเสื้อผ้าาู้ยิงปืนก่อนซักและหลัง ซักหรือไม่
2) ควรศึกษาการตรวจหาเขม่าปืนจาก เสื้อผ้าผู้ยิงปืนทำการศึกษาหลังซักในผ้าที่ทำการรีด ให้ความร้อนมีผลต่อการตรวจหาเขม่าปืนหรือไม่
3) ควรศึกษาการตรวจหาเขม่าปืนจาก เสื้อผ้าผู้ยงปืนในอาวุธปืนประเภทต่างๆ เปรียบเทียบ

ในการเก็บตัวอย่างบนเสื้อผ้าก่อนซักและหลังซัก เช่น อาวุธธืนสั้นประเภทต่างๆ
4) ควรศึกษาการตรวจหาเขม่าปืนกับผู้ ที่อยู่ในเหตุการณ์ที่มีการยิงปืนและบริเวณใกล้เคียง เพื่อตรววพิสูจน์ำผู่ที่อยู่ในสถานที่มีการใช้อาวุธปืน จะสามารถตรวจพบเขม่าปืนจากเสื้อผ้าได้หรือไม่

บรรณานุกรม

จิรัวชร ธนูรัตน์. (2551). คู่มือการตรวจดินปืน เขม่าดินปืน ตะกั่ว และทองแดง ของลูกกระสุนปืน. เอกสารเผยแพร่าองพิสูจน์หลักฐาน สำนักงานนิติวิทยาศาสตร์ตำรวจจังหวัด
เจริญ ปานคล้าย. (2552). การตรวจเขม่าดินปืนบนเสี้อผ้าที่ระยะยิงต่าง ๆ ด้วยเทคนิค ICP MS. เอกสารเผยแพร่งานคุณภาพเพื่อใช้ประกอบการเลื่อนตำแหน่งกลุ่มงานตรวจอาวุธและเครื่องกระสุนปืน กองพิสูจน์หลักฐาน สำนักงานนิติวิทยาศาสตร์ตำรวจจังหวัด
นพสิทธิ์ อัครนพหงส์. (2550). หลักการตรวจพิสูจน์เขม่าที่เกิดจากการการยิงปืน. กองพิสูจน์หลักฐาน สำนักงานิิติวิทยาศาสตร์ตำรวจจังหวัด
ณรงค์ กุลนิเทศ. (2551). การพิสูจน์หลักฐานและความเป็นธรรมทางสังคม. (พิมพ์ครั้งที่ 1). กรุงเทพย ห้างหุ้นส่วนจำกัดสามลดา.
ณัฐัันัน์ ชาติรักวงศ์. (2551). การตรวจเขม่าปืนบนเสื้อผ้าด้วยเทคนิค SEM/EDS. วิทยานิพนธ์ ปริญญามหาบัณฑิต สาขานิติวิทยาศาสตร์บัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล.
ทีมข่าวอิศรา. (2557). เจาะสถิติ 10 ด้านในวาระ 10 ปี ไฟใต้. สืบค้นเมื่อ 5 มิถุนายน $2557, \mathrm{http}: / /$ www.isranews.org/south-news/stat-history /item/26389-10subjects.html
ทีมข่าวอิศรา. (2556). ย้อนรอยคดีปล้นปืน ผ่ายุทธการปืนของรัฐคือปืนของเรา. สืบค้นเมื่อ 15 มีนาคม 2556, http://www.learners.in.th/blogs/posts/363887
พิมพันธ์ วงษ์แก้ว และชนิดดา อุทัยแพน. (2550). การวิเคราะห์หาปริมาณแอนติมอนี ตะกั่ว และ แบเรียมในคราบเขม่าปืนโดยเทคนิคโวลแทนเมตรี. มหาวิทยาลัยมหาสารคาม ปกรณ์ พื่งเนตร. (2556). งบดับไฟใต้จ่อ 2 แสนล้าน ปืนถูกปล้น 1,629 กระบอก รัฐยันหมู่บ้าน สีแดงลด. สืบค้นเมื่อ 15 มีนาคม 2556 , http://wbns.oas.psu.ac.th/shownews.php?news_id $=127266$
แม้น อมรสิทธิ์ และคณะ. (2552). หลักการและเทคนิควิเคราะห์เชิงเครื่องมือ กรุงเทพย: บริษัทชวนการพิมพ์ 50 จำกัด.
รัชนารถ กิตติดุษมี. (2535). การตรวจคราบเขม่าจากการยิงปืนที่มือ โดยวิธี SEM/EDX. วิทยานิพนธ์ ปริญญามหาบัณฑิต สาขานิติวิทยาศาสตร์บัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล.

[^0]: *อาจารย์ประจำหลักสูตรปรัชญาดุษฎีบัณฑิตและวิทยาศาสตรมหาบัณฑิต สาขาวิชานิติวิทยาศาสตร์มหาวิทยาลัยราชภั๊ฐสวนสุนันทา

